

Chemical Engineering principles—First Year Dr. Ahmed Faiq Al-Alawy

Conversion Factors

VOLUME EQUIVALENTS

	in.3	ft ³	U.S. gal	liters	m^3
in. ³		5.787 × 10 ⁻⁴	4.329 × 10 ⁻³	1.639 × 10 ⁻²	1.639 × 10 ⁻⁵
ft ³	1.728 × 10 ³	1	7.481	28.32	2.832 × 10 ⁻²
U.S. gal	2.31 × 10 ²	0.1337		3.785	3.785×10^{-3}
liters	61.03 👞	3.531 × 10 ⁻²	0.2642		1.000×10^{-3}
m ³	6.102×10 ⁴	35.31	264.2	1000	

Mass Equivalents

	avoir oz	pounds	grains	grams
avoir oz	1	6.25 × 10 ⁻²	4.375×10^{2}	28.35
pounds	16	1	7×10³	4.536 × 10 ²
grains	2.286 × 10 ⁻³	1.429 × 10 ⁻⁴	1	6.48 × 10 ⁻²
grams	3.527 × 10 ⁻²	2.20×10^{-3}	15.432	1.

LINEAR MEASURE EQUIVALENTS

	meter	inch	foot	mile
meter	1	39.37	3.2808	6.214 × 10 ⁻⁴
inch	2.54 × 10 ⁻²		8.333 × 10 ⁻²	1.58 × 10 ⁻⁵
foot	0.3048	12		1.8939 × 10⁻⁴
mile	1.61×10^{3}	6.336×10 ⁴	5280	1

POWER EQUIVALENTS

	hp	kW	(ft)(lb _f)/s	.Btu/s	J/s
hp	1	0.7457	550	0.7068	7.457×10^{2}
kW	1.341	1	737.56	0.9478	1.000×10^{3}
(ft)(lb _f)/s	1.818 × 10 ⁻³	1.356 × 10 ⁻³	1	1.285 × 10 ⁻³	1.356
Btu/s	1.415	1.055	778.16		1.055×10^{3}
J/s	1.341 × 10 ⁻³	1.000×10^{-3}	0.7376	9.478 × 10 ⁻⁴	1

Chemical Engineering principles—First Year Dr. Ahmed Faiq Al-Alawy

Conversion Factors

HEAT, ENERGY, OR WORK EQUIVALENTS

	(ft)(lb _f)	kWh	(hp)(hr)	Btu	calorie*	joule
(ft)(lb _f)		3.766 × 10 ⁻⁷	5.0505 × 10 ⁻⁷	1.285 × 10 ⁻³	0.3241	1,356
kWh	2.655 × 10 ⁶		1.341	3.4128×10^{3}	8.6057 × 10 ⁵	3.6×10^{6}
(hp)(hr)	1.98×10 ⁶	0.7455	1	2.545×10^{3}	6.4162 × 10 ⁵	2.6845 × 10 ⁶
Btu .	7.7816×10 ²	2.930 × 10 ⁻⁴	3.930 × 10-4	W1 2 22.	2.52 × 10 ²	1.055×10^{3}
calorie*	3.086	1.162 × 10 ⁻⁶	1.558 × 10 ⁻⁶	3.97 × 10 ⁻³		4.184
joule	0.7376	2.773 × 10-7	3.725 × 10 ⁻⁷	9.484 × 10 ⁻⁴	0.2390	1

^{*}The thermochemical calorie = 4.184 J.

PRESSURE EQUIVALENTS

	mm Hg	in. Hg	bar	atm	kPa	psia
mm Hg	A	3.937 × 10 ⁻²	1.333 × 10 ⁻³	1.316×10 ⁻³	0.1333	1.934 × 10 ⁻²
in. Hg	25.40	1	3.386 × 101	3.342×10^{-2}	3.386	0.4912
bar	750.06	29.53	1	0.9869	100.0	14.51
atm	760.0	29.92	1.013	1	101.3	14.696
kPa	7.502	0.2954	1.000×10^{-2}	9.872 × 10 ⁻³	1	0.1451
psia	51.71	2.036	6.893 × 10 ⁻²	6.805×10^{-2}	6.893	1

IDEAL GAS CONSTANT R

1.987 cal/(g mol)(K)

1.987 Btu/(lb mol)(°R)

10.73 (psia)(ft3)/(lb mol)(°R)

 $8.314 \text{ (kPa)}(\text{m}^3)/(\text{kg mol})(\text{K}) = 8.314 \text{ J/(g mol)}(\text{K})$

82.06 (cm³)(atm)/(g mol)(K)

0.08206 (L)(atm)/(g mol)(K)

21.9 (in Hg)(ft³)/(lb mol)(°R)

0.7302 (ft3)(atm)/(lb mol)(°R)

MISCELLANEOUS CONVERSION FACTORS

To convert from	То	Multiply by
angstrom	meter	1.000 × 10 ⁻¹⁰
barrel (petroleum)	gal	42
centipoise	(newton)(s)/m ²	1.000×10^{-3}
torr (mm Hg, 0°C)	newton/meter2	1.333 × 10 ²
fluid oz	cm ³	29.57
		27.31 - 1695 (1